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INTRODUCTION 

Prostate cancer is the most commonly diagnosed cancer and the second most common cause of 
cancer death in men in the United States.[1,2] Gene therapy has emerged as a potentially promising 
strategy for treatment of prostate cancer.[3-15] The prostate is particularly amenable to gene therapy.[11-
16] However, there are major issues in terms of assessing the delivery to target tissue, assessing the 
uniformity (versus heterogeneity) of biodistribution and determining whether the genes are 
expressed.[15-33] A viral construct is often readministered on successive occasions, but this should 
optimally be timed to coincide with loss of expression. Inevitably gene therapy has associated risks, and 
thus non-invasive in vivo determining the duration of gene expression in an individual tumor could 
greatly enhance the viability of the approach. 

Gene expression now is commonly monitored by in situ hybridization techniques or by introducing 
a marker gene to follow the regulation of a gene of interest. Since β-galactosidase (β-gal) activity is 
readily assessed by histology or in culture, in hosts as evolutionarily diverse as bacteria, yeast, and 
mammals, its introduction has become a standard means of assaying clonal insertion, transcriptional 
activation, protein expression, and protein interaction, lacZ gene encoding E. coli β-gal has already been 
recognized as the most commonly used reporter system.[34] However, the well-established chromogenic 
or fluorogenic substrates, relying on the hydrolysis by β-gal to release colorful compounds are limited to 
histology or in vitro assays.[35-39] Non-invasive in vivo detecting of transgene expression would be of 
considerable value in many ongoing and future clinical gene therapy trials.  

Magnetic resonance imaging (MRI) techniques recently have obtained spectacular image 
resolutions (voxel resolutions of about 10 μm  in vitro and about 50 μm  in vivo), opening the realm of 
imaging at very high resolutions in small animals during development and in clinical practice.[40-44] 
Additionally, a new emerging generation of responsive MRI contrast agents holds great promise in the 
gene therapy arena.[45,46] The 

3 3

abilities of these contrast agents to relax water protons is triggered or 
enhanced greatly by recognition of a particular biomolecule opening up the possibility of developing 
MRI tests specific for biomarkers indicative of particular disease states and aiding in the early detection 
and diagnosis of tumors. Desreux et al [42,47] demonstrated that, by chelating Gd(phen)HDO3A with 
Fe(II) to form a highly stable tris-complex, as shown in Figure 1, the relaxivity increased 145% at 
20MHz and 37°C from 5.1mM-1s-1 per Gd(III) in Gd(phen)HDO3A form to 12.2 mM-1s-1 in the tris-
complex. Desreux et al [42,47] also synthesized another iron-sensitive MRI contrast agent with a tris-
hydroxamate (Figure 2). After the tris-hydroxamate groups formed a chelate with Fe(III), free rotation at 
the Gd(III) centers was restricted, thereby increasing relaxivity by 57% from 5.4 to 8.5mM-1s-1 at 20 
MHz. 

Iron is a critically important metal ion for a wide variety of cellular events.[48] Tumor cells, as 
compared with their normal counterparts, frequently exhibit increased uptake and utilization of iron, as 
evidenced by an increase in transferrin receptors at the cell surface.[49-51] Additionally, cancer cells are 
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sensitive to the effects of iron chelators because of the critical requirement for iron in proteins that play 
essential roles in DNA synthesis and energy production.[52,53] Such studies have led to iron chelation 
therapy to clinically treat some tumors.[54-58] 

Relaxivity: 5.4                8.5mM-1s-1
20MHz, 37C

Increasing 57%

Binding Site for Fe(III)

Figure 2. The iron(III)-sensitive MRI 
agent Gd(III)-Trishydroxamic acid 
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Based on the MRI contrast agents findings and the biologic features of tumor, we have proposed in 
this project a novel class of enzyme activated Gd3+-based MRI contrast agent for in vivo detection of β-
gal activity, in which we try to combine all means of reaching the highest possible relaxivities.[42,47] 
Figure 3 depicts the mechanism for in vivo detection of lacZ gene expression through β-gal activated in 
situ Fe3+-trapped MRI contrast agent formation. 
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Figure 3. Mechanism of proposed new platform for in vivo detection of lacZ gene expression through β-gal 
activated in situ Fe3+-trapped MRI contrast agent formation.

Additionally, prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein 
with enzymatic activities: N-acetylated α-linked L-amino dipeptidase (NAALADase) and γ-glutamyl 
carboxypeptidase (folate hydrolase).[59-61] Studies with the monoclonal antibodies have demonstrated 
that PSMA is the most well-established, highly restricted prostate cancer cell surface antigen, it is 
expressed at high density on the cell membrane of all prostate cancers.[62-64] The high prostate tissue 
specificity of PSMA has been identified as an ideal therapeutic and diagnostic target for prostate cancer, 
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this potential was exemplified by the recent FDA approval of an 111In-labeled PSMA monoclonal 
antibody (Prostascint®) for diagnostic imaging of prostate cancer.[65-67] Furthermore, phase I and II 
trials have begun using immunotherapy directed against PSMA.[68-70] By introducing γ-glutamate 
residue instead of D-galactose in our proposed above new mechanism diagram, we intend to develop a 
novel class of Gd(III)-based MRI contrast agents for in vivo imaging prostate tumor through PSMA 
activated in situ Fe3+-trapped MRI contrast agent formation (Figure 4).  
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Figure 4. Proposed new mechanism for in vivo imaging prostate tumor through PSMA activated in situ Fe3+-
trapped MRI contrast agent formation.

Especially, PSMA has a large extracellular domain,[70] so the expression of PSMA tethered to the 
surface of the prostate cancer cells makes that the novel peptide-based MRI contrast agents can be 
targeted for activation within the extracellular fluid of prostate cancers [71] and overcomes the need for a 
peptide-based MRI contrast agent to penetrate the tumor cell membrane, thus, providing in vivo prostate 
cancer imaging through an extracellular MRI approach. The concern of permeability is one of the 
greatest challenges in the development of in vivo MRI contrast agents.[72]  

Accordingly, depending upon the enzyme sources either being the lacZ transgene or the PSMA 
from prostate tumors, this new platform could provide in vivo lacZ gene expression assay or in vivo 
prostate cancer imaging (in particular, through extracellular contrast agents), with combining all the 
approaches of reaching the highest possible relaxivities.[42,47,72] Furthermore, this new class of 
responsive MRI contrast agent is composed of three functional moieties, in which the signal enhancing 
and Fe3+ chelating parts are flexible allowing modification in a search for ideal Fe3+-trapped MRI 
contrast agents. Importantly, the combination of three functional moieties is based on the clinically 
applied strategies on cancer therapy. These facts strongly suggest the potential of the proposal to future 
clinical application. 

Most recently, Merbach et al [73-76] also observed the remarkably high T1 relaxivity gain by Fe(II) 
complex formation from (tpy-DTTA)Gd(H2O) with 7.3mM-1s-1 to {FeII[GdIII

2(tpy-DTTA)2(H2O)4]3}4- 
with 15.7mM-1s-1 at 20MHz and 37°C, significantly, their detailed studies on structure and dynamics of 
the trinuclear complex {FeII[GdIII

2(tpy-DTTA)2(H2O)4]3}4- indicate that the heterometallic self-
assemblies attain high T1 relaxivities by influencing three factors: water exchange, rotation, and electron 
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relaxation, which are fully consistent with the expecting results shown as above in Figures 3 and 4, the 
effectiveness of contrast agents can be increased by restricting the motion of Gd(III) chelates by linking 
them rigidly to macromolecules through covalent or non-covalent bonds, by an improvement of their 
intrinsic relaxivity or by attaching several paramagnetic entities to biological or synthetic oligomers. 
Obviously, these comprehensive investigations as relevant evidences strongly support for our current 
proposal. 

STATEMENT OF WORK 

Specific Aim 1 Design and synthesize model “smart” MRI contrast agents to report β-gal or PSMA 
activities with the ability of trapping Fe3+ ion.  

Task 1 Design and optimization of synthetic strategies for reporter molecules. (Months 1-18) 
Task 2 Structural characterizations of the synthesized molecules. (Months 4-20) 
Specific Aim 2 Test the properties of molecules in solution and in vitro with cultured prostate 

cancer cells. 
Task 3 Evaluation the basic properties of the agents in solution. (Months 20-22) 
Task 4 Evaluation of the properties of the optimal molecules in vitro with cultured prostate 

cancer cells. (Months 23-25) 
Specific Aim 3 Scale up synthesis of the most promising MRI contrast agent(s) and apply to 

animal investigations. 
Task 5 Scale up synthesis of the most promising 1H MRI contrast agent(s). (Months 26-28) 
Task 6 Apply the most promising 1H MRI contrast agent(s) to assess β-gal transfection efficiency, 

lacZ gene expression (spatial and temporal) in prostate tumors in vivo (48 mice + 48 rats). (Months 29-
35) 

Task 7 Test dosing protocols, timing, MR detection protocols (48 mice) (Months 29-35) 
Task 8 Prepare manuscripts and final report (Month 36) 

PROGRESS 

In this first supported year, our work is totally focused on: Task 1 Design and optimization of 
synthetic strategies for reporter molecules, and Task 2 Structural characterizations of the synthesized 
molecules, strictly followed the research plan of the approved proposal W81XWH-05-1-0593. 

 For the designed molecules M1 and M2, our syntheses have carried out according to the 
approaches as shown in Figure 9 of the proposal. Through a series of reactions, we have built the key 
structure (see the red structure) of Gd3+ and Fe3+ chelators. In the next six months, we are going to 
stereo- and regioselectively couple with D-galactose or γ-glutamate acid. 

Similarly, the syntheses of M3 - M6 have reached to the skeleton structures (see the red structures) 
of Gd3+ and Fe3+ chelators.  
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Also, the syntheses of M7 - M8 by constructing 3, 6, 9, 15-tetraazabicyclo[9.3.1]pentadeca-1(15), 
11, 13-triene-3, 6, 9-triacetic acid as an alternative signal enhancement group through a much different 
route have arrived at the key structure (see the red structure) of Gd3+ and Fe3+ chelators. 
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In each step of the multiple reactions, products were purified by chromatography or 

recrystallization and characterized by acquisition of 1H, 13C, DEPT, 1H-1H COSY NMR techniques. 

KEY RESEARCH ACCOMPLISHMENTS 

All syntheses for the target molecules M1 - M8 have accomplished the construction of the important 
key structures of Gd3+ and Fe3+ chelators, and their structures all are verified by NMR data, providing the 
solid foundation for the further syntheses. Meanwhile, we have accumulated relevant experience, and 
gotten some expertise for efficient synthesis and separation of these intermediates, which will greatly 
benefit for the scale-up synthesis of the most promising 1H MRI contrast agent(s) in Task 5. 

REPORTABLE OUTCOMES 
A series of intermediates related the target molecules M1 - M8 have achieved.  

CONCLUSIONS 

Prostate cancer is the most commonly diagnosed cancer and the second most common cause of 
cancer death in men in the United States. The advent of effective screening measures can sharply 
decrease the mortality of prostate cancer through detecting this disease at an earlier stage. However, the 
evidence for mortality benefit from prostate cancer screening has been disappointing to date. Expanding 
knowledge of prostate cancer biology with combination of imaging technologies would be of 
considerable value in many ongoing and future clinical prostate cancer diagnosis and gene therapy trials. 

Based on the biologic features of prostate cancer, we proposed in this project a new approach for in 
vivo lacZ gene expression assay or in vivo prostate cancer imaging (in particular, through extracellular 
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contrast agents). The ultimate objective is to demonstrate the utility and reliability of this new approach 
to measure β-gal or PSMA activities in vivo. We have accomplished the construction of the important 
key structures of Gd3+ and Fe3+ chelators, and verified by NMR data. We are now focusing on stereo- 
and regioselectively coupling with D-galactose or γ-glutamate acid to accomplish the designed 
molecules   M1 - M8, anticipating to identify 1-2 as of the most promising MRI contrast agents for testing 
the sequence of tests with prostate cancer in vitro and in vivo.  
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